Eksportuj (0) Drukuj
Rozwiń wszystko
Ten artykuł był przetłumaczony komputerowo. Oryginalny tekst zobaczysz, umieszczając wskaźnik myszy nad zdaniami w artykule.
Tłumaczenie
Oryginał

Badanie modelu drzewa decyzji (Analysis Services - wyszukiwania danych)

SQL Server 2008 R2

Podczas tworzenia kwerendy danych model wyszukiwania, można utworzyć kwerendę zawartości, która zawiera szczegółowe informacje dotyczące wzorców wykryte w analizie, lub można utworzyć kwerendę przewidywanie używa desenie w modelu, aby prognoz dla nowych danych. Na przykład kwerendy zawartości dla modelu drzewa decyzji może dostarczyć statystyki dotyczące liczby przypadków w każdym poziom drzewa lub reguły, które rozróżnienia przypadków. Alternatywnie kwerendy przewidywanie mapuje modelu nowe dane w celu generowania zalecenia, klasyfikacje i tak dalej. Aby pobrać metadane dotyczących modelu kwerendy.

W tej sekcji wyjaśniono, jak tworzyć kwerendy dla modeli, które są oparte na Microsoft algorytm drzewa decyzji.

Kwerendy zawartości

Pobieranie parametrów modelu z zestawu wierszy schematu wyszukiwania danych

Uzyskiwanie szczegółowych informacji o drzew w modelu przy użyciu DMX

Pobieranie poddrzew z modelu

Przewidywania kwerend

Zwracanie prognoz z prawdopodobieństwa

Przewidywaniu skojarzenia z modelu drzewa decyzji

Pobieranie formuły regresji z modelu drzewa decyzji

Do tworzenia kwerend znaczenie zawartości modelu drzewa decyzji, należy zrozumieć strukturę zawartości modelu i typy węzłów, które przechowują rodzaj informacji. Aby uzyskać więcej informacji, zobacz Model zawartości dla modeli drzewa decyzji górnictwo (Analysis Services - wyszukiwania danych).

Przykładowa kwerenda 1: Pobieranie parametrów modelu z zestawu wierszy schematu wyszukiwania danych

Przez badanie zestaw wierszy schematu wyszukiwanie danych, można znaleźć metadane dotyczące modelu, takie jak utworzenia go, gdy model ostatnio został przetworzony, nazwa struktura wyszukiwania że zależy od modelu i nazwę kolumna używane jako atrybut przewidywalne. Może również zwracać parametry, które były używane podczas modelu została utworzona.

select MINING_PARAMETERS 
from $system.DMSCHEMA_MINING_MODELS
WHERE MODEL_NAME = 'TM_Decision Tree'

Przykładowe wyniki:

MINING_PARAMETERS

COMPLEXITY_PENALTY = 0,5 MAXIMUM_INPUT_ATTRIBUTES = 255, MAXIMUM_OUTPUT_ATTRIBUTES = 255, MINIMUM_SUPPORT = 10, SCORE_METHOD = 4 SPLIT_METHOD = 3, FORCE_REGRESSOR =

Powrót do początku

Przykładowa kwerenda 2: Zwracanie szczegółowe informacje o modelu zawartości przy użyciu DMX

Następująca kwerenda zwraca niektóre podstawowe informacje dotyczące algorytmów, które zostały utworzone podczas tworzenia modelu Samouczek wyszukiwania danych podstawowych. Każdej struktury drzewa jest przechowywana w własny węzła. Ponieważ ten model zawiera pojedynczy atrybut przewidywalny, istnieje tylko jeden węzeł drzewa. Jednak jeśli przy użyciu algorytmu algorytmów tworzenia modelu skojarzeń, może występować setki drzew, jeden dla każdego produktu.

Ta kwerenda zwraca wszystkie węzły typu 2, które węzły najwyższego poziom drzewa reprezentujący określonego atrybut przewidywalne.

UwagaUwaga:

kolumna, CHILDREN_CARDINALITY, musi być ujęty w nawiasy, aby odróżnić go od słowo kluczowe MDX zarezerwowane tej samej nazwy.

SELECT MODEL_NAME, NODE_NAME, NODE_CAPTION, 
NODE_SUPPORT, [CHILDREN_CARDINALITY]
FROM TM_DecisionTrees.CONTENT
WHERE NODE_TYPE = 2

Przykład wyniki:

NAZWA_MODELU

NAZWA_WĘZŁA

NODE_CAPTION

NODE_SUPPORT

CHILDREN_CARDINALITY

TM_DecisionTree

000000001

Wszystko

12939

5

Co wyniki te informacje? W modelu drzewa decyzji Kardynalność określonego węzła informuje ile bezpośrednie elementy podrzędne węzła ma. Kardynalność dla tego węzła jest 5, co oznacza, że model podzielony zapełnianie miejsce docelowe potencjalnych nabywców bike 5 podgrup.

Następujące pokrewne kwerenda zwraca podrzędność dla tych pięciu podgrupy, wraz z dystrybucji atrybuty i wartości w węzłach podrzędność. Ponieważ statystyki, takie jak obsługa, prawdopodobieństwa oraz odchylenie są przechowywane w tabela zagnieżdżonej NODE_DISTRIBUTION, w tym przykładzie użyto FLATTENED słowa kluczowego do wyprowadzenia kolumny tabela zagnieżdżonej.

UwagaUwaga:

kolumna tabela zagnieżdżonej SUPPORT, musi być ujęty w nawiasy, aby odróżnić go od zarezerwowane słowo kluczowe tej samej nazwy.

SELECT FLATTENED NODE_NAME, NODE_CAPTION,
(SELECT ATTRIBUTE_NAME, ATTRIBUTE_VALUE, [SUPPORT]
FROM NODE_DISTRIBUTION) AS t
FROM TM_DecisionTree.CONTENT
WHERE [PARENT_UNIQUE_NAME] = '000000001'

Przykład wyniki:

NAZWA_WĘZŁA

NODE_CAPTION

T.ATTRIBUTE_NAME

T.ATTRIBUTE_VALUE

OBSŁUGA

00000000100

Liczba samochodów własnością = 0

Kupujący Bike

Brak

0

00000000100

Liczba samochodów własnością = 0

Kupujący Bike

0

1067

00000000100

Liczba samochodów własnością = 0

Kupujący Bike

1

1875

00000000101

Liczba samochodów własnością = 3

Kupujący Bike

Brak

0

00000000101

Liczba samochodów własnością = 3

Kupujący Bike

0

678

00000000101

Liczba samochodów własnością = 3

Kupujący Bike

1

473

Z tych wyniki można stwierdzić, klientów, którzy zakupione bike ([Bike Buyer] = 1), klienci 1067 miał 0 samochodów i 473 klientów była 3 samochodów.

Powrót do początku

Przykładowa kwerenda 3: Pobieranie poddrzew z modelu

Załóżmy, że odnajdowanie więcej o klientów, którzy kupić rower. Dodatkowe szczegóły kontaktach można przeglądać za pomocą IsDescendant (DMX) funkcja w kwerendzie, jak pokazano w następującym przykładzie. Kwerenda zwraca liczbę nabywców bike pobierając liść węzły (NODE_TYPE = 4) z drzewa zawierający klientów, którzy są ponad 42 roku życia. Kwerenda ogranicza wierszy z tabela zagnieżdżonej do tych, z których kupujący Bike = 1.

SELECT FLATTENED NODE_NAME, NODE_CAPTION,NODE_TYPE,
(
SELECT [SUPPORT] FROM NODE_DISTRIBUTION WHERE ATTRIBUTE_NAME = 'Bike Buyer' AND ATTRIBUTE_VALUE = '1'
) AS t
FROM TM_DecisionTree.CONTENT
WHERE ISDESCENDANT('0000000010001')
AND NODE_TYPE = 4

Przykład wyniki:

NAZWA_WĘZŁA

NODE_CAPTION

t.support

000000001000100

Roczny dochód >= 26000 i < 42000

266

00000000100010100

Suma dzieci = 3

75

0000000010001010100

Liczba dzieci w Główny = 1

75

Powrót do początku

Ponieważ drzewo decyzyjne mogą być używane do różnych zadań, w tym klasyfikacji, regresja i skojarzenia nawet podczas tworzenia kwerendy przewidywanie na modelu drzewo decyzyjne ma wiele dostępnych opcji. Cel, dla którego został utworzony model zrozumieć wyniki przewidywanie należy zrozumieć. Następujące próbki kwerend ilustrują trzy różne scenariusze:

  • Zwracanie przewidywanie modelu klasyfikacji, wraz z prawdopodobieństwem przewidywanie są poprawne, a następnie filtrowanie wyniki według prawdopodobieństwa;

  • Tworzenie kwerendy singleton przewidywanie stowarzyszeń;

  • Pobieranie formuły regresja dla części drzewo decyzyjne, gdzie jest liniowy relacji między dane wejściowe i wyjściowe.

Przykładowa kwerenda 4: Zwracanie prognoz z prawdopodobieństwa

W następującej kwerendzie przykładowej wykorzystuje model drzewo decyzyjne, który został utworzony w Samouczek wyszukiwania danych podstawowych. Kwerenda przechodzi w nowy zestaw przykładowych danych z tabela dbo.ProspectiveBuyers w AdventureWorks2008R2 DW do przewidywania, której klienci w nowy zestaw danych zakupu rowerów.

Funkcja przewidywanie kwerendy PredictHistogram (DMX), która zwraca zagnieżdżona tabela zawiera przydatne informacje dotyczące prawdopodobieństwa wykrycia przez model. Końcowe klauzula WHERE kwerendy filtrów wyniki do zwrócenia tylko klienci, którzy są przewidywane jako prawdopodobne kupić rower, z prawdopodobieństwem większa niż 0%.

SELECT
  [TM_DecisionTree].[Bike Buyer],
  PredictHistogram([Bike Buyer]) as Results
From
  [TM_DecisionTree]
PREDICTION JOIN
  OPENQUERY([Adventure Works DW],
    'SELECT
      [FirstName],
      [LastName],
      [MaritalStatus],
      [Gender],
      [YearlyIncome],
      [TotalChildren],
      [NumberChildrenAtHome],
      [HouseOwnerFlag],
      [NumberCarsOwned]
    FROM
      [dbo].[ProspectiveBuyer]
    ') AS t
ON
  [TM_DecisionTree].[First Name] = t.[FirstName] AND
  [TM_DecisionTree].[Last Name] = t.[LastName] AND
  [TM_DecisionTree].[Marital Status] = t.[MaritalStatus] AND
  [TM_DecisionTree].[Gender] = t.[Gender] AND
  [TM_DecisionTree].[Yearly Income] = t.[YearlyIncome] AND
  [TM_DecisionTree].[Total Children] = t.[TotalChildren] AND
  [TM_DecisionTree].[Number Children At Home] = t.[NumberChildrenAtHome] AND
  [TM_DecisionTree].[House Owner Flag] = t.[HouseOwnerFlag] AND
  [TM_DecisionTree].[Number Cars Owned] = t.[NumberCarsOwned]
WHERE [Bike Buyer] = 1
AND PredictProbability([Bike Buyer]) >'.05'

Domyślnie Usługi Analysis Services zwraca zagnieżdżone tabele z etykietą kolumna wyrażenie. Etykieta można zmienić przez wygładzanie kolumna, która jest zwracana. Jeśli to zrobisz, alias (w tym przypadek wyniki) jest używana jako nagłówek kolumna, a wartość w tabela zagnieżdżonej. Aby wyświetlić wyniki w tabela zagnieżdżonej należy rozwinąć.

Przykład wyniki:

Kupujący Bike

Wyniki

1

Wyniki

Kupujący BikeOBSŁUGA $PRAWDOPODOBIEŃSTWO $$ADJUSTEDPROBABILITYODCHYLENIE $FUNKCJA ODCH.STANDARDOWE $
125400.6348492420456440.01356216828156200
014600.3649841745793770.0066133693255091500
00.0001665833749791770.00016658337497917700

Jeśli dostawca nie obsługuje hierarchicznych zestawów wierszy, takie jak pokazano tutaj, można użyć słowa kluczowego FLATTENED w kwerendzie do zwracania wyniki jako tabela, która zawiera wartości null, zamiast wartości kolumna powtarzających się. Aby uzyskać więcej informacji, zobacz Zagnieżdżone tabele (Analysis Services - wyszukiwania danych) lub Opis instrukcji Select (DMX).

Powrót do początku

Przykładowa kwerenda 5: Przewidywaniu skojarzenia z modelu drzewa decyzji

W następującej kwerendzie przykładowej opiera się na Association struktura wyszukiwania. Aby wykonać wraz z tym przykładzie, można dodać nowy model tej struktura wyszukiwaniai wybierz opcję Microsoft algorytmów jako algorytmu. Aby uzyskać więcej informacji na temat tworzenia Association struktura wyszukiwania, zobacz Lekcja 3: Tworzenie scenariusza koszyka rynku (samouczek wyszukiwania danych pośrednich).

W następującej kwerendzie przykładowej jest kwerendą singleton, które można tworzyć w łatwo Business Intelligence Development Studio Wybieranie pól, a następnie wybierając wartości tych pól z drop -niedziałający listy.

SELECT PredictAssociation([DT_Association].[v Assoc Seq Line Items],3)
FROM
  [DT_Association]
NATURAL PREDICTION JOIN
(SELECT (SELECT 'Patch kit' AS [Model]) AS [v Assoc Seq Line Items]) AS t

Oczekiwane wyniki:

Model

Rower górski 200

Mountain Tire Tube

Opona probówki do roweru turystycznego

Wyniki powiedz trzech najlepszych produktów zaleca klientom, którzy zakupili poprawka zestawu produktów. Możesz także podać wiele produktów jako dane wejściowe podczas formułować zalecenia, wpisując wartości lub za pomocą Singleton kwerendy wprowadzania okno dialogowe Dodawanie lub usuwanie wartości. W następującej kwerendzie przykładowej pokazuje, jak wiele wartości są dostarczane, po którym z przewidywanie. Wartości są połączone przez związek klauzula w instrukcja SELECT, która definiuje wartości wejściowych.

SELECT PredictAssociation([DT_Association].[v Assoc Seq Line Items],3)
From
  [DT_Association]
NATURAL PREDICTION JOIN
(SELECT (SELECT 'Racing Socks' AS [Model]
  UNION SELECT 'Women''s Mountain Shorts' AS [Model]) AS [v Assoc Seq Line Items]) AS t

Oczekiwane wyniki:

Model

Długie rękawy Logo Jersey

Mountain-400-W

Kamizelka klasyczne

Powrót do początku

Przykładowa kwerenda 6: Pobieranie formuły regresji z modelu drzewa decyzji

Podczas tworzenia modelu drzewo decyzyjne, który zawiera regresja ciągłego atrybut można użyć formuły regresja dokonać prognoz lub można wyodrębnić informacje o formuły regresja. Aby uzyskać więcej informacji o kwerendach modele regresja, zobacz Badanie modelu regresji liniowej (Analysis Services - wyszukiwania danych).

Jeśli model drzewa decyzji zawiera mieszaniny regresja węzłów i węzłów, dzielących discrete atrybutów lub zakresy, można utworzyć kwerendę zwracającą tylko węzeł regresja. Tabela NODE_DISTRIBUTION zawiera szczegóły formuły regresja. W tym przykładzie są spłaszczane kolumn i tabela NODE_DISTRIBUTION jest aliasu dla ich łatwiejszego oglądania. Jednak w tym modelu regressors nie stwierdzono odnoszą się Income z innymi atrybutami ciągłe. W takich przypadkach Usługi Analysis Services zwraca średnią wartość atrybut i odchylenia razem w modelu dla tego atrybut.

SELECT FLATTENED NODE_DISTRIBUTION AS t
FROM DT_Predict. CONTENT
WHERE NODE_TYPE = 25

Przykład wyniki:

t.ATTRIBUTE_NAME

t.ATTRIBUTE_VALUE

t.support

t.PROBABILITY

t.VARIANCE

t.VALUETYPE

Roczny dochód

Brak

0

0.000457142857142857

0

1

Roczny dochód

57220.8876687257

17484

0.999542857142857

1041275619.52776

3

  

57220.8876687257

0

0

1041216662.54387

11

Aby uzyskać więcej informacji dotyczących typów wartości i statystyki, używane w modelach regresja, zobacz Górnictwo zawartości modelu regresji liniowej modeli (Analysis Services - wyszukiwania danych).

Powrót do początku

Wszystkie Microsoft obsługę algorytmów wspólny zestaw funkcji. Jednakże Microsoft algorytm drzewa decyzji obsługuje dodatkowe funkcje wymienione w poniższej tabela.

Aby uzyskać listę funkcji, które są wspólne dla wszystkich Microsoft algorytmy, zobacz Mapowanie funkcji kwerendy typów (DMX). Aby składni określonych funkcji, zobacz Odwołanie do funkcji rozszerzenia górnictwa (DMX) danych.

Czy oceniasz te materiały jako pomocne?
(Pozostało znaków: 1500)
Dziękujemy za opinię.

Zawartość społeczności

Dodaj
Pokaż:
© 2014 Microsoft