TechNet
Export (0) Print
Expand All

Native Compilation Advisor

 

Applies To: SQL Server 2016

THIS TOPIC APPLIES TO: yesSQL Server (starting with 2014) yesAzure SQL Database noAzure SQL Data Warehouse noParallel Data Warehouse

Transaction Performance Analysis reports tells you which interpreted stored procedures in your database will benefit if ported to use native compilation. For details see Determining if a Table or Stored Procedure Should Be Ported to In-Memory OLTP.

After you identify a stored procedure that you would like to port to use native compilation, you can use the Native Compilation Advisor (NCA) to help you migrate the interpreted stored procedure to native compilation. For more information about natively compiled stored procedures, see Natively Compiled Stored Procedures.

In a given interpreted stored procedure, the NCA allows you to identify all the features that are not supported in native modules. The NCA provides documentation links to work-arounds or solutions.

For information about migration methodologies, see In-Memory OLTP – Common Workload Patterns and Migration Considerations.

In Object Explorer, right click the stored procedure you want to convert, and select Native Compilation Advisor. This will display the welcome page for the Stored Procedure Native Compilation Advisor. Click Next to continue.

This page will report if the stored procedure uses any constructs that are not compatible with native compilation. You can click Next to see details. If there are constructs that are not compatible with native compilation, you can click Next to see details.

If there are constructs that are not compatible with native compilation, the Stored Procedure Validation Result page will display details. You can generate a report (click Generate Report), exit the Native Compilation Advisor, and update your code so that it is compatible with native compilation.

The following sample shows an interpreted stored procedure and the equivalent stored procedure for native compilation. The sample assumes a directory called c:\data.

System_CAPS_noteNote

As usual, the FILEGROUP element, and the USE mydatabase statement, apply to Microsoft SQL Server, but do not apply to Azure SQL Database.

CREATE DATABASE Demo
ON
PRIMARY(NAME = [Demo_data],
FILENAME = 'C:\DATA\Demo_data.mdf', size=500MB)
, FILEGROUP [Demo_fg] CONTAINS MEMORY_OPTIMIZED_DATA(
NAME = [Demo_dir],
FILENAME = 'C:\DATA\Demo_dir')
LOG ON (name = [Demo_log], Filename='C:\DATA\Demo_log.ldf', size=500MB)
COLLATE Latin1_General_100_BIN2;
go

USE Demo;
go

CREATE TABLE [dbo].[SalesOrders]
(
     [order_id] [int] NOT NULL,
     [order_date] [datetime] NOT NULL,
     [order_status] [tinyint] NOT NULL
     CONSTRAINT [PK_SalesOrders] PRIMARY KEY NONCLUSTERED HASH 
(
     [order_id]
) WITH ( BUCKET_COUNT = 2097152)
) WITH ( MEMORY_OPTIMIZED = ON )
go

-- Interpreted.
CREATE PROCEDURE [dbo].[InsertOrder] @id INT, @date DATETIME2, @status TINYINT
AS 
BEGIN 
  INSERT dbo.SalesOrders VALUES (@id, @date, @status);
END
go

-- Natively Compiled.
CREATE PROCEDURE [dbo].[InsertOrderXTP]
      @id INT, @date DATETIME2, @status TINYINT
  WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS 
BEGIN ATOMIC WITH 
     (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'us_english'
     )
  INSERT dbo.SalesOrders VALUES (@id, @date, @status);
END
go

SELECT * from SalesOrders;
go

EXECUTE dbo.InsertOrder @id= 10, @date = '1956-01-01 12:00:00', @status = 1;
EXECUTE dbo.InsertOrderXTP @id= 11, @date = '1956-01-01 12:01:00', @status = 2;

SELECT * from SalesOrders;

Community Additions

ADD
Show:
© 2016 Microsoft